In statistics, the interquartile range (IQR) is a number that indicates how spread out the data are, and tells us what the range is in the middle of a set of scores.
The interquartile range IQR is defined as:[1][2]

That is, it is calculated as the range of the middle half of the scores. The scores are divided into four equal parts, separated by the quartiles
and
, after the scores have been arranged in ascending order (becoming bigger as one goes further). The second quartile
is also known as the median.[3]
The interquartile range is not sensitive to outliers (scores that are much higher or much lower than the other scores). In fact, it eliminates them.
Example
Given the following 20 scores arranged from the smallest to the largest:
- 1, 2, 2, 2, 3, 4, 6, 8, 8, 8, 8, 8, 9, 11, 11, 14, 14, 15, 15, 29
We can put them into four different groups of five numbers each:
- 1, 2, 2, 2, 3 | 4, 6, 8, 8, 8 | 8, 8, 9, 11, 11 | 14, 14, 15, 15, 29
The groups are thus separated by:

Hence the interquartile range is:

If the observation 29 has accidentally been written down as 92 instead, then this number is an outlier. If that happens the interquartile range is not affected.
Related pages
References
- ↑ "List of Probability and Statistics Symbols". Math Vault. 2020-04-26. Retrieved 2020-10-13.
- ↑ "InterQuartile Range (IQR)". sphweb.bumc.bu.edu. Retrieved 2020-10-13.
- ↑ "Interquartile Range: Definition". stattrek.com. Retrieved 2020-10-13.
|
|---|
|
|
|---|
| Continuous data | |
|---|
| Count data | |
|---|
| Summary tables | |
|---|
| Dependence | |
|---|
| Graphics |
- Bar chart
- Biplot
- Box plot
- Control chart
- Correlogram
- Fan chart
- Forest plot
- Histogram
- Pie chart
- Q–Q plot
- Run chart
- Scatter plot
- Stem-and-leaf display
- Radar chart
- Violin plot
|
|---|
|
|
|
|---|
| Study design |
- Population
- Statistic
- Effect size
- Statistical power
- Optimal design
- Sample size determination
- Replication
- Missing data
|
|---|
| Survey methodology | |
|---|
| Controlled experiments | |
|---|
| Adaptive Designs |
- Adaptive clinical trial
- Up-and-Down Designs
- Stochastic approximation
|
|---|
| Observational Studies |
- Cross-sectional study
- Cohort study
- Natural experiment
- Quasi-experiment
|
|---|
|
|
|
|---|
| Statistical theory | |
|---|
| Frequentist inference | | Point estimation |
- Estimating equations
- Unbiased estimators
- Mean-unbiased minimum-variance
- Rao–Blackwellization
- Lehmann–Scheffé theorem
- Median unbiased
- Plug-in
|
|---|
| Interval estimation | |
|---|
| Testing hypotheses |
- 1- & 2-tails
- Power
- Uniformly most powerful test
- Permutation test
- Multiple comparisons
|
|---|
| Parametric tests |
- Likelihood-ratio
- Score/Lagrange multiplier
- Wald
|
|---|
|
|---|
| Specific tests | | | Goodness of fit | |
|---|
| Rank statistics |
- Sign
- Signed rank (Wilcoxon)
- Rank sum (Mann–Whitney)
- Nonparametric anova
- 1-way (Kruskal–Wallis)
- 2-way (Friedman)
- Ordered alternative (Jonckheere–Terpstra)
|
|---|
|
|---|
| Bayesian inference | |
|---|
|
|
|
|---|
| Correlation | |
|---|
| Regression analysis |
- Errors and residuals
- Regression validation
- Mixed effects models
- Simultaneous equations models
- Multivariate adaptive regression splines (MARS)
|
|---|
| Linear regression | |
|---|
| Non-standard predictors |
- Nonlinear regression
- Nonparametric
- Semiparametric
- Isotonic
- Robust
- Heteroscedasticity
- Homoscedasticity
|
|---|
| Generalized linear model | |
|---|
| Partition of variance |
- Analysis of variance (ANOVA, anova)
- Analysis of covariance
- Multivariate ANOVA
- Degrees of freedom
|
|---|
|
|
Categorical / Multivariate / Time-series / Survival analysis |
|---|
| Categorical |
- Cohen's kappa
- Contingency table
- Graphical model
- Log-linear model
- McNemar's test
- Cochran-Mantel-Haenszel statistics
|
|---|
| Multivariate |
- Regression
- Manova
- Principal components
- Canonical correlation
- Discriminant analysis
- Cluster analysis
- Classification
- Structural equation model
- Multivariate distributions
|
|---|
| Time-series | | General |
- Decomposition
- Trend
- Stationarity
- Seasonal adjustment
- Exponential smoothing
- Cointegration
- Structural break
- Granger causality
|
|---|
| Specific tests |
- Dickey–Fuller
- Johansen
- Q-statistic (Ljung–Box)
- Durbin–Watson
- Breusch–Godfrey
|
|---|
| Time domain |
- Autocorrelation (ACF)
- Cross-correlation (XCF)
- ARMA model
- ARIMA model (Box–Jenkins)
- Autoregressive conditional heteroskedasticity (ARCH)
- Vector autoregression (VAR)
|
|---|
| Frequency domain | |
|---|
|
|---|
| Survival | | Survival function |
- Kaplan–Meier estimator (product limit)
- Proportional hazards models
- Accelerated failure time (AFT) model
- First hitting time
|
|---|
| Hazard function | |
|---|
| Test | |
|---|
|
|---|
|
|
Applications |
|---|
| Biostatistics | |
|---|
| Engineering statistics |
- Chemometrics
- Methods engineering
- Probabilistic design
- Process / quality control
- Reliability
- System identification
|
|---|
| Social statistics | |
|---|
| Spatial statistics |
- Cartography
- Environmental statistics
- Geographic information system
- Geostatistics
- Kriging
|
|---|
|
|