An abundant number is a number
for which its sum of divisors, excluding itself, is greater than
. 12 is an abundant number because
.
18 is also an abundant number because
. The series is in the Online Encyclopedia of Integer Sequences (Sloane) as A005101. 120 is considered a super abundant number since the sum of its divisors equals exactly twice the number. 945 is the first odd abundant number. The smallest odd abundant numbers that end in 1, 3, 7, and 9, are 81081, 153153, 207207, and 189189, respectively.
If a number is not abundant, it is called either deficient or perfect.
List of abundant numbers
List of the first 120 abundant numbers:
|
|---|
|
|
Other polynomial numbers |
|---|
- Hilbert
- Idoneal
- Leyland
- Loeschian
- Lucky numbers of Euler
|
|
|
|---|
- Fibonacci
- Jacobsthal
- Leonardo
- Lucas
- Padovan
- Pell
- Perrin
|
|
Possessing a specific set of other numbers |
|---|
- Congruent
- Knödel
- Riesel
- Sierpiński
|
|
Expressible via specific sums |
|---|
- Nonhypotenuse
- Polite
- Practical
- Primary pseudoperfect
- Ulam
- Wolstenholme
|
|
Figurate numbers |
|---|
| 2-dimensional | | centered |
- Centered triangular
- Centered square
- Centered pentagonal
- Centered hexagonal
- Centered heptagonal
- Centered octagonal
- Centered nonagonal
- Centered decagonal
- Star
|
|---|
| non-centered |
- Triangular
- Square
- Square triangular
- Pentagonal
- Hexagonal
- Heptagonal
- Octagonal
- Nonagonal
- Decagonal
- Dodecagonal
|
|---|
|
|---|
| 3-dimensional | | centered |
- Centered tetrahedral
- Centered cube
- Centered octahedral
- Centered dodecahedral
- Centered icosahedral
|
|---|
| non-centered |
- Tetrahedral
- Cubic
- Octahedral
- Dodecahedral
- Icosahedral
- Stella octangula
|
|---|
| pyramidal | |
|---|
|
|---|
| 4-dimensional | | non-centered |
- Pentatope
- Squared triangular
- Tesseractic
|
|---|
|
|---|
|
|
Combinatorial numbers |
|---|
- Bell
- Cake
- Catalan
- Dedekind
- Delannoy
- Euler
- Eulerian
- Fuss–Catalan
- Lah
- Lazy caterer's sequence
- Lobb
- Motzkin
- Narayana
- Ordered Bell
- Schröder
- Schröder–Hipparchus
- Stirling first
- Stirling second
|
|
|
|---|
- Wieferich
- Wall–Sun–Sun
- Wolstenholme prime
- Wilson
|
|
Pseudoprimes |
|---|
- Carmichael number
- Catalan pseudoprime
- Elliptic pseudoprime
- Euler pseudoprime
- Euler–Jacobi pseudoprime
- Fermat pseudoprime
- Frobenius pseudoprime
- Lucas pseudoprime
- Lucas–Carmichael number
- Somer–Lucas pseudoprime
- Strong pseudoprime
|
|
Arithmetic functions and dynamics |
|---|
|
|
|
|---|
- Blum
- Cyclic
- Erdős–Nicolas
- Erdős–Woods
- Friendly
- Giuga
- Harmonic divisor
- Lucas–Carmichael
- Pronic
- Regular
- Rough
- Smooth
- Sphenic
- Størmer
- Super-Poulet
- Zeisel
|
|
|
|---|
Arithmetic functions and dynamics | | Digit sum |
- Digit sum
- Digital root
- Self
- Sum-product
|
|---|
| Digit product |
- Multiplicative digital root
- Sum-product
|
|---|
| Coding-related | |
|---|
| Other |
- Dudeney
- Factorion
- Kaprekar
- Kaprekar's constant
- Keith
- Lychrel
- Narcissistic
- Perfect digit-to-digit invariant
- Perfect digital invariant
|
|---|
|
|---|
| P-adic numbers-related | |
|---|
| Digit-composition related |
- Palindromic
- Pandigital
- Repdigit
- Repunit
- Self-descriptive
- Smarandache–Wellin
- Strictly non-palindromic
- Undulating
|
|---|
| Digit-permutation related |
- Cyclic
- Digit-reassembly
- Parasitic
- Primeval
- Transposable
|
|---|
| Divisor-related |
- Equidigital
- Extravagant
- Frugal
- Harshad
- Polydivisible
- Smith
- Vampire
|
|---|
| Other | |
|---|
|
|
|
|
|
|---|
- Pancake number
- Sorting number
|
|
|
|
Divisibility-based sets of integers |
|---|
| Overview | |
|
|---|
| Factorization forms | |
|---|
| Constrained divisor sums |
- Perfect
- Almost perfect
- Quasiperfect
- Multiply perfect
- Hemiperfect
- Hyperperfect
- Superperfect
- Unitary perfect
- Semiperfect
- Practical
- Erdős–Nicolas
|
|---|
| With many divisors | |
|---|
| Aliquot sequence-related |
- Untouchable
- Amicable (Triple)
- Sociable
- Betrothed
|
|---|
| Base-dependent |
- Equidigital
- Extravagant
- Frugal
- Harshad
- Polydivisible
- Smith
|
|---|
| Other sets |
- Arithmetic
- Deficient
- Friendly
- Solitary
- Sublime
- Harmonic divisor
- Descartes
- Refactorable
- Superperfect
|
|---|