In math, an almost perfect number (also called slightly defective or least deficient number) is a type of natural number n. The sum of n's divisors must be equal to 2n − 1. Every known almost perfect number is a power of 2 and has non-negative exponents (sequence A000079 in the OEIS).
Examples
For example, the divisors of 32 are 1, 2, 4, 8, 16 and 32. The sum of those is 63. 32 ⋅ 2 - 1 is 63. This makes 32 an almost perfect number.
Odd numbers
The only known odd almost perfect number 1. An odd almost perfect number that is not 1 is possible. It would, however, have to have six prime factors.[1][2]
References
Further reading
- Guy, R. K. (1994). "Almost Perfect, Quasi-Perfect, Pseudoperfect, Harmonic, Weird, Multiperfect and Hyperperfect Numbers". Unsolved Problems in Number Theory (2nd ed.). New York: Springer-Verlag. pp. 16, 45–53.
- Sándor, József; Mitrinović, Dragoslav S.; Crstici, Borislav, eds. (2006). Handbook of number theory I. Dordrecht: Springer-Verlag. p. 110. ISBN 1-4020-4215-9. Zbl 1151.11300.
- Sándor, Jozsef; Crstici, Borislav, eds. (2004). Handbook of number theory II. Dordrecht: Kluwer Academic. pp. 37–38. ISBN 1-4020-2546-7. Zbl 1079.11001.
- Singh, S. (1997). Fermat's Enigma: The Epic Quest to Solve the World's Greatest Mathematical Problem. New York: Walker. p. 13. ISBN 9780802713315.
|
|---|
|
|
Other polynomial numbers |
|---|
- Hilbert
- Idoneal
- Leyland
- Loeschian
- Lucky numbers of Euler
|
|
|
|---|
- Fibonacci
- Jacobsthal
- Leonardo
- Lucas
- Padovan
- Pell
- Perrin
|
|
Possessing a specific set of other numbers |
|---|
- Congruent
- Knödel
- Riesel
- Sierpiński
|
|
Expressible via specific sums |
|---|
- Nonhypotenuse
- Polite
- Practical
- Primary pseudoperfect
- Ulam
- Wolstenholme
|
|
Figurate numbers |
|---|
| 2-dimensional | | centered |
- Centered triangular
- Centered square
- Centered pentagonal
- Centered hexagonal
- Centered heptagonal
- Centered octagonal
- Centered nonagonal
- Centered decagonal
- Star
|
|---|
| non-centered |
- Triangular
- Square
- Square triangular
- Pentagonal
- Hexagonal
- Heptagonal
- Octagonal
- Nonagonal
- Decagonal
- Dodecagonal
|
|---|
|
|---|
| 3-dimensional | | centered |
- Centered tetrahedral
- Centered cube
- Centered octahedral
- Centered dodecahedral
- Centered icosahedral
|
|---|
| non-centered |
- Tetrahedral
- Cubic
- Octahedral
- Dodecahedral
- Icosahedral
- Stella octangula
|
|---|
| pyramidal | |
|---|
|
|---|
| 4-dimensional | | non-centered |
- Pentatope
- Squared triangular
- Tesseractic
|
|---|
|
|---|
|
|
Combinatorial numbers |
|---|
- Bell
- Cake
- Catalan
- Dedekind
- Delannoy
- Euler
- Eulerian
- Fuss–Catalan
- Lah
- Lazy caterer's sequence
- Lobb
- Motzkin
- Narayana
- Ordered Bell
- Schröder
- Schröder–Hipparchus
- Stirling first
- Stirling second
|
|
|
|---|
- Wieferich
- Wall–Sun–Sun
- Wolstenholme prime
- Wilson
|
|
Pseudoprimes |
|---|
- Carmichael number
- Catalan pseudoprime
- Elliptic pseudoprime
- Euler pseudoprime
- Euler–Jacobi pseudoprime
- Fermat pseudoprime
- Frobenius pseudoprime
- Lucas pseudoprime
- Lucas–Carmichael number
- Somer–Lucas pseudoprime
- Strong pseudoprime
|
|
Arithmetic functions and dynamics |
|---|
|
|
|
|---|
- Blum
- Cyclic
- Erdős–Nicolas
- Erdős–Woods
- Friendly
- Giuga
- Harmonic divisor
- Lucas–Carmichael
- Pronic
- Regular
- Rough
- Smooth
- Sphenic
- Størmer
- Super-Poulet
- Zeisel
|
|
|
|---|
Arithmetic functions and dynamics | | Digit sum |
- Digit sum
- Digital root
- Self
- Sum-product
|
|---|
| Digit product |
- Multiplicative digital root
- Sum-product
|
|---|
| Coding-related | |
|---|
| Other |
- Dudeney
- Factorion
- Kaprekar
- Kaprekar's constant
- Keith
- Lychrel
- Narcissistic
- Perfect digit-to-digit invariant
- Perfect digital invariant
|
|---|
|
|---|
| P-adic numbers-related | |
|---|
| Digit-composition related |
- Palindromic
- Pandigital
- Repdigit
- Repunit
- Self-descriptive
- Smarandache–Wellin
- Strictly non-palindromic
- Undulating
|
|---|
| Digit-permutation related |
- Cyclic
- Digit-reassembly
- Parasitic
- Primeval
- Transposable
|
|---|
| Divisor-related |
- Equidigital
- Extravagant
- Frugal
- Harshad
- Polydivisible
- Smith
- Vampire
|
|---|
| Other | |
|---|
|
|
|
|
|
|---|
- Pancake number
- Sorting number
|
|
|
|
Divisibility-based sets of integers |
|---|
| Overview | |
|
|---|
| Factorization forms | |
|---|
| Constrained divisor sums |
- Perfect
- Almost perfect
- Quasiperfect
- Multiply perfect
- Hemiperfect
- Hyperperfect
- Superperfect
- Unitary perfect
- Semiperfect
- Practical
- Erdős–Nicolas
|
|---|
| With many divisors | |
|---|
| Aliquot sequence-related |
- Untouchable
- Amicable (Triple)
- Sociable
- Betrothed
|
|---|
| Base-dependent |
- Equidigital
- Extravagant
- Frugal
- Harshad
- Polydivisible
- Smith
|
|---|
| Other sets |
- Arithmetic
- Deficient
- Friendly
- Solitary
- Sublime
- Harmonic divisor
- Descartes
- Refactorable
- Superperfect
|
|---|