In math, a primitive abundant number is a special kind of abundant number. Its proper divisors, however, must all be deficient numbers (numbers whose sum of proper divisors are less than 2 times that number).[1][2]
Example
For example, 20 is a primitive abundant number because:
- 20 is an abundant number. This is because the sum of its divisors is 1 + 2 + 4 + 5 + 10 + 20 > 40. This makes 20 an abundant number.
- The sums of the proper divisors of 1, 2, 4, 5 and 10 are 0, 1, 3, 1 and 8. All of these numbers are a deficient number. This makes 20 a primitive abundant number.
The first few primitive abundant numbers are 20, 70, 88, 104, 272, 304, 368, 464, 550, 572 ... (sequence A071395 in the OEIS)
The smallest odd primitive abundant number is 945.
Another definition of a primitive abundant number would be abundant numbers having no abundant proper divisors, which could also include perfect-numbered divisors (i.e. multiples of 6, 28, 496, 8128, etc...)
The first few primitive abundant numbers which include perfect numbered divisors are 12, 18, 20, 30, 42, 56, 66, 70, 78, 88, 102, 104, 114... (sequence A091191 in the OEIS)
Properties
Every multiple of a primitive abundant number is abundant .
Every abundant number is a multiple of either a primitive abundant number or a multiple of a perfect number.
Every primitive abundant number is either a primitive semiperfect number or a weird number.
There is an infinite amount of primitive abundant numbers.[3]
References
- ↑ Eric W. Weisstein, Primitive Abundant Number at MathWorld.
- ↑ Erdős adopts a wider definition that requires a primitive abundant number to be not deficient, but not necessarily abundant (Erdős, Surányi and Guiduli. Topics in the Theory of Numbers p214. Springer 2003.). The Erdős definition allows perfect numbers to be primitive abundant numbers too.
- ↑ Paul Erdős, Journal of the London Mathematical Society 9 (1934) 278–282.
|
|---|
|
|
Other polynomial numbers |
|---|
- Hilbert
- Idoneal
- Leyland
- Loeschian
- Lucky numbers of Euler
|
|
|
|---|
- Fibonacci
- Jacobsthal
- Leonardo
- Lucas
- Padovan
- Pell
- Perrin
|
|
Possessing a specific set of other numbers |
|---|
- Congruent
- Knödel
- Riesel
- Sierpiński
|
|
Expressible via specific sums |
|---|
- Nonhypotenuse
- Polite
- Practical
- Primary pseudoperfect
- Ulam
- Wolstenholme
|
|
Figurate numbers |
|---|
| 2-dimensional | | centered |
- Centered triangular
- Centered square
- Centered pentagonal
- Centered hexagonal
- Centered heptagonal
- Centered octagonal
- Centered nonagonal
- Centered decagonal
- Star
|
|---|
| non-centered |
- Triangular
- Square
- Square triangular
- Pentagonal
- Hexagonal
- Heptagonal
- Octagonal
- Nonagonal
- Decagonal
- Dodecagonal
|
|---|
|
|---|
| 3-dimensional | | centered |
- Centered tetrahedral
- Centered cube
- Centered octahedral
- Centered dodecahedral
- Centered icosahedral
|
|---|
| non-centered |
- Tetrahedral
- Cubic
- Octahedral
- Dodecahedral
- Icosahedral
- Stella octangula
|
|---|
| pyramidal | |
|---|
|
|---|
| 4-dimensional | | non-centered |
- Pentatope
- Squared triangular
- Tesseractic
|
|---|
|
|---|
|
|
Combinatorial numbers |
|---|
- Bell
- Cake
- Catalan
- Dedekind
- Delannoy
- Euler
- Eulerian
- Fuss–Catalan
- Lah
- Lazy caterer's sequence
- Lobb
- Motzkin
- Narayana
- Ordered Bell
- Schröder
- Schröder–Hipparchus
- Stirling first
- Stirling second
|
|
|
|---|
- Wieferich
- Wall–Sun–Sun
- Wolstenholme prime
- Wilson
|
|
Pseudoprimes |
|---|
- Carmichael number
- Catalan pseudoprime
- Elliptic pseudoprime
- Euler pseudoprime
- Euler–Jacobi pseudoprime
- Fermat pseudoprime
- Frobenius pseudoprime
- Lucas pseudoprime
- Lucas–Carmichael number
- Somer–Lucas pseudoprime
- Strong pseudoprime
|
|
Arithmetic functions and dynamics |
|---|
|
|
|
|---|
- Blum
- Cyclic
- Erdős–Nicolas
- Erdős–Woods
- Friendly
- Giuga
- Harmonic divisor
- Lucas–Carmichael
- Pronic
- Regular
- Rough
- Smooth
- Sphenic
- Størmer
- Super-Poulet
- Zeisel
|
|
|
|---|
Arithmetic functions and dynamics | | Digit sum |
- Digit sum
- Digital root
- Self
- Sum-product
|
|---|
| Digit product |
- Multiplicative digital root
- Sum-product
|
|---|
| Coding-related | |
|---|
| Other |
- Dudeney
- Factorion
- Kaprekar
- Kaprekar's constant
- Keith
- Lychrel
- Narcissistic
- Perfect digit-to-digit invariant
- Perfect digital invariant
|
|---|
|
|---|
| P-adic numbers-related | |
|---|
| Digit-composition related |
- Palindromic
- Pandigital
- Repdigit
- Repunit
- Self-descriptive
- Smarandache–Wellin
- Strictly non-palindromic
- Undulating
|
|---|
| Digit-permutation related |
- Cyclic
- Digit-reassembly
- Parasitic
- Primeval
- Transposable
|
|---|
| Divisor-related |
- Equidigital
- Extravagant
- Frugal
- Harshad
- Polydivisible
- Smith
- Vampire
|
|---|
| Other | |
|---|
|
|
|
|
|
|---|
- Pancake number
- Sorting number
|
|
|
|
Divisibility-based sets of integers |
|---|
| Overview | |
|
|---|
| Factorization forms | |
|---|
| Constrained divisor sums |
- Perfect
- Almost perfect
- Quasiperfect
- Multiply perfect
- Hemiperfect
- Hyperperfect
- Superperfect
- Unitary perfect
- Semiperfect
- Practical
- Erdős–Nicolas
|
|---|
| With many divisors | |
|---|
| Aliquot sequence-related |
- Untouchable
- Amicable (Triple)
- Sociable
- Betrothed
|
|---|
| Base-dependent |
- Equidigital
- Extravagant
- Frugal
- Harshad
- Polydivisible
- Smith
|
|---|
| Other sets |
- Arithmetic
- Deficient
- Friendly
- Solitary
- Sublime
- Harmonic divisor
- Descartes
- Refactorable
- Superperfect
|
|---|