In mathematics, a power of two is any number which is an integer power of two. Each power of 2 is twice as large as the one before. Powers of two are important in binary just as powers of ten (like 1, 10, 100, etc.) are important in decimal. The numbers one less than powers of two are called Mersenne numbers.
|
|---|
|
|
Other polynomial numbers |
|---|
- Hilbert
- Idoneal
- Leyland
- Loeschian
- Lucky numbers of Euler
|
|
|
|---|
- Fibonacci
- Jacobsthal
- Leonardo
- Lucas
- Padovan
- Pell
- Perrin
|
|
Possessing a specific set of other numbers |
|---|
- Congruent
- Knödel
- Riesel
- Sierpiński
|
|
Expressible via specific sums |
|---|
- Nonhypotenuse
- Polite
- Practical
- Primary pseudoperfect
- Ulam
- Wolstenholme
|
|
Figurate numbers |
|---|
| 2-dimensional | | centered |
- Centered triangular
- Centered square
- Centered pentagonal
- Centered hexagonal
- Centered heptagonal
- Centered octagonal
- Centered nonagonal
- Centered decagonal
- Star
|
|---|
| non-centered |
- Triangular
- Square
- Square triangular
- Pentagonal
- Hexagonal
- Heptagonal
- Octagonal
- Nonagonal
- Decagonal
- Dodecagonal
|
|---|
|
|---|
| 3-dimensional | | centered |
- Centered tetrahedral
- Centered cube
- Centered octahedral
- Centered dodecahedral
- Centered icosahedral
|
|---|
| non-centered |
- Tetrahedral
- Cubic
- Octahedral
- Dodecahedral
- Icosahedral
- Stella octangula
|
|---|
| pyramidal | |
|---|
|
|---|
| 4-dimensional | | non-centered |
- Pentatope
- Squared triangular
- Tesseractic
|
|---|
|
|---|
|
|
Combinatorial numbers |
|---|
- Bell
- Cake
- Catalan
- Dedekind
- Delannoy
- Euler
- Eulerian
- Fuss–Catalan
- Lah
- Lazy caterer's sequence
- Lobb
- Motzkin
- Narayana
- Ordered Bell
- Schröder
- Schröder–Hipparchus
- Stirling first
- Stirling second
|
|
|
|---|
- Wieferich
- Wall–Sun–Sun
- Wolstenholme prime
- Wilson
|
|
Pseudoprimes |
|---|
- Carmichael number
- Catalan pseudoprime
- Elliptic pseudoprime
- Euler pseudoprime
- Euler–Jacobi pseudoprime
- Fermat pseudoprime
- Frobenius pseudoprime
- Lucas pseudoprime
- Lucas–Carmichael number
- Somer–Lucas pseudoprime
- Strong pseudoprime
|
|
Arithmetic functions and dynamics |
|---|
|
|
|
|---|
- Blum
- Cyclic
- Erdős–Nicolas
- Erdős–Woods
- Friendly
- Giuga
- Harmonic divisor
- Lucas–Carmichael
- Pronic
- Regular
- Rough
- Smooth
- Sphenic
- Størmer
- Super-Poulet
- Zeisel
|
|
|
|---|
Arithmetic functions and dynamics | | Digit sum |
- Digit sum
- Digital root
- Self
- Sum-product
|
|---|
| Digit product |
- Multiplicative digital root
- Sum-product
|
|---|
| Coding-related | |
|---|
| Other |
- Dudeney
- Factorion
- Kaprekar
- Kaprekar's constant
- Keith
- Lychrel
- Narcissistic
- Perfect digit-to-digit invariant
- Perfect digital invariant
|
|---|
|
|---|
| P-adic numbers-related | |
|---|
| Digit-composition related |
- Palindromic
- Pandigital
- Repdigit
- Repunit
- Self-descriptive
- Smarandache–Wellin
- Strictly non-palindromic
- Undulating
|
|---|
| Digit-permutation related |
- Cyclic
- Digit-reassembly
- Parasitic
- Primeval
- Transposable
|
|---|
| Divisor-related |
- Equidigital
- Extravagant
- Frugal
- Harshad
- Polydivisible
- Smith
- Vampire
|
|---|
| Other | |
|---|
|
|
|
|
|
|---|
- Pancake number
- Sorting number
|
|
|
|